Reference \& Formulas:

Weight of Water, 1 gallon $=8.338$ Lbs (at 60 F)
Volume of Water, 1 gallon $=7.4805$ Cu. Feet

ANSI Class	
125	Rating (PSI)
150	285
300	740
600	1480

$V=$ GPM/D^2 * 0.4085	(Velocity of water)
V = Velocity in FPS (feet per second)	
GPM = water flowrate in gallons per minute	
$D^{\wedge} 2$ = pipe inside diameter (in inches) squared	

GPM $=C v^{*}($ SqRoot of delta P)	(Flow thru a valve or orfice)
GPM = water flowrate in gallons per minute	
$C v=$ Vale flow coefficient (no units)	
delta $P=$ pressure drop across valve in psi	

HP = (GPM \times TDH / Eff. X 3960) \times SG
HP $=$ Required horsepower
GPM = Flowrate in gallons per minute
TDH = Discharge Head in Feet
Eff. - Efficiency in \%
$3960=$ Constant
SG = Specific gravity $=1.0$ for water
KW $=$ HP $\times 0.7457$


```Affinity Laws; (Pump Flow vs RPM vs Head vs Power) \(\mathrm{Q} 1 / \mathrm{Q} 2=\mathrm{N} 1 / \mathrm{N} 2\) \(\mathrm{H} 1 / \mathrm{H} 2=(\mathrm{N} 1 / \mathrm{N} 2)^{\wedge} 2\) BHP1/BHP2 \(=\) N1^3/N2^3 Q = flowrate \(\mathrm{H}=\) head (in Ft) \(\mathrm{N}=\) speed (in rpm) BHP = brake horsepower (in HP)```
```1 BTU = energy to rasie 1 LB water 1 deg F (Heat Load Calculation) BTU/Hr = (GPM)*(delta T)*(C) GPM = flowrate in gallons per minute delta \(T=\) temperature difference in Deg F C \(=504\), constant for \(100 \%\) water C \(=433\), constant for \(50 \%\) water \(/ 50 \%\) Glycol mix```

